RNA: Transcription and Translation

RNA

- **<u>RNA</u>**: ribonucleic acid
 - Carries out *protein synthesis*
- Differences from DNA:
 - different sugar (*ribose*)
 - single strand
 - different base
 - no *thymine*
 - URACIL instead

Which organelle produces proteins?

Different Types of RNA

- <u>Messenger RNA</u>: (*mRNA*) carries nucleotide sequence from nucleus to ribosome
- <u>**Transfer RNA</u>**: (*tRNA*) picks up amino acid in cytoplasm and carries them to ribosome</u>
- <u>Ribosomal RNA</u>: (*rRNA*)found in ribosome, joins mRNA and tRNA; forms protein

Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.

Transcription

 <u>Transcription</u>process that makes mRNA from DNA

- 1. DNA *unzips (deshacer)* into 2 separate strands
 - DNA Helicase is the enzyme that breaks hydrogen-bond

Free-floating mRNA NITROGEN BASES in the nucleus attach to unzipped DNA

Base Pairing:

A. Cytosine(C) pairs with Guanine(G)
B. *Uracil**** (U) pairs with Adenine(A)
C. Thymine (T) pairs with Adenine (A) ****remember (T) is only with DNA*

mRNA travels to ribosome.

DNA zips up again.

Transcription

Transcription

Transcription of DNA Inside the Nucleus

- 1. DNA unzips.
- 2. mRNA bases attach.
- 3. mRNA goes to ribosome.
- 4. DNA zips up again.

Results of Transcription

After all the pairing is done:

- a *single strand* of RNA has been produced.
- Genetic code from DNA has been *transferred* to mRNA
- The code obtained from DNA lets the mRNA know which amino acids to pick up:
 - code is a set of <u>3 nitrogen bases</u> = <u>Codon</u>

Translation

- 1) The *mRNA* leaves the nucleus and enters the cytoplasm
- 2) **Ribosomes** attach to mRNA
- 3) *tRNA* (carrying *anti-codon*) picks up the correct amino acids and carries them to the mRNA strand
- 4) The *protein* is formed
- Ex: tRNA carries GAU (anticodon) & looks for CUA on mRNA

The *mRNA* leaves the nucleus and enters the cytoplasm

- One end of *tRNA* binds to the mRNA codon.
 - tRNA has an <u>anti-codon</u>, which binds with the CODON of mRNA
- The other end of *tRNA* is carrying <u>amino acids</u> (this match the <u>anti-codon</u>)

The <u>amino acid</u> chain is connected (linked) by <u>peptide bonds</u> to form a <u>polypeptide chain</u>

This **polypeptide chain** forms the **protein**

