Air Masses

air pressure

air mass

Air density

temperature

humidity

hot/warm

bitterly cold/cold/cool

dry

moist (wet)

severe weather

thunderstorms

tornado

hurricane

front

cold front

Cold Front

Cloud condensation

Warm front

Stationary Front

Stationary Front

t

Occluded Front

wind

thermometer

barometer

psychrometer

isolines

isobars

isotherms

Air Masses, Fronts

Air Masses

- An <u>air mass</u> is a large body of air that takes on the characteristics of the area over which it forms (**temperature** and **humidity**)
- Named for the surfaces over which they form
 - Continental Tropical (cT)
 - Maritime Tropical (mT)
 - Continental Polar (cP)
 - Maritime Polar (mP)
 - Arctic (A)

Continental Arctic Bitterly cold, dry

Maritime Polar Cool. moist

Centinental Pelar Cold, dry

loanitime Pelar Ceel. moist

Maritime Tropic Varm, moist Continental Tropic Bot, dry

Maritime Tropic

Weather in the United States

- Continental Polar (cP) (cool, dry air) from Canada collides with Maritime Tropical (mT) (warm, moist) air from the Gulf of Mexico.
 - These air masses are responsible for most of the weather we experience in the United States

Check for Understanding

Why is it useful to know what kind of air mass is moving through our region?

Air Masses

- <u>Air masses</u> move when they encounter a **pressure difference** with a surrounding air mass
 - <u>Severe weather</u> (such as hurricanes, tornadoes) occur when air masses meet
- Bill Nye Air Pressure

https://www.youtube. com/watch?v=QeAp3CuGjk8

Types of Severe Weather

Thunderstorms •

Tornadoes •

Hurricanes •

Fronts

- A <u>front</u> is the region separating two **air masses** of **different densities**
 - Cold Front
 - Warm Front
 - Stationary Front
 - Occluded Front

Fronts

Meteorologists track the movement of fronts to be able to predict temperature and humidity at a specific location

Weather Maps

- Weather Maps are two-dimensional representations of fronts
 - Lines and symbols represent weather fronts with a view from above
 - Lines and symbols represent the direction in which the front is moving

Check for Understanding

Why do meteorologists track fronts?

Cold Fronts and Warm Fronts Interactive

http://www.classzone.com/books/earth_science/terc/content/visualizations/es2002/es2002page01.cfm?chapter_no=visualization

Cold Front

Cold Front

Colder air pushes under warmer air lifting warmer air

- Warm air rises and we see **cloud condensation**
- Clouds, showers (rain) and thunderstorms are associated with cold fronts

Cold Front

Cold Front

Warm Front

Warm Front

Warmer air pushes over cold air

- In a <u>warm front</u>, warm air displaces cold air
 - A warm front is characterized by extensive **cloudiness** and **precipitation**

Warm Front

Warm Front

Stationary Front

Stationary Front Cold and warm air masses meet but neither one pushes the other (warm air still rises upward) There are rarely any clouds or heavy precipitation

Stationary Front

t

Stationary Front

Occluded Front

Occluded Front Cold front catches up to warm front lifting and trapping warm air above

Change in temperature and **wind shift** are typically associated with an occluded front

Occluded Front

Air Density

• <u>Air Density</u> is the amount of air contained in a specific volume

Air Density

- Factors that affect air density:
 - a. <u>**Temperature**</u>-As temperature increases, air density decreases
 - b. <u>Air Pressure</u> As pressure increases, air density increases
 - c. <u>Altitude</u> As altitude increases, air pressure and density decreases
 - d. <u>Humidity</u> As humidity (moisture in the air) increases, air density decreases

Wind

Unequal heating of the Earth's surface creates large areas of warm, rising air

- This creates areas of **low pressure**
- Leads to clouds and stormy weather

Wind

Areas where there is cooler, sinking air creates areas of **<u>high pressure</u>**

• Leads to air drying out, leaves sunny skies

Wind

Due to surface pressure differences, air is forced from areas of **high pressure** to areas of **low pressure**.

- The effect is called **wind**!
- The more difference in air pressure, the stronger the wind.

Side views of High (H) and Low (L) pressure areas

Wind Systems

Due to the **Coriolis Effect**, wind turns **clockwise** in the Northern Hemisphere and **counterclockwise** in the Southern Hemisphere.

Weather Analysis

Gathering Weather Data

- Meteorologists use the following tools to **gather information about weather conditions**
 - <u>Thermometer</u> -Measures temperature
 - **<u>Barometer</u>** Measures **air pressure**
 - **Storms** generally form in **low pressure systems**

Gathering Weather Data

Scientists use a **psychrometer** to measure differences in reading between two thermometers

Measure <u>relative humidity</u>

Weather Maps

- Meteorologists use <u>isolines</u> on weather maps to show areas of similar conditions
- <u>Isolines</u> Connect points of the same quantity
 - <u>Isobars</u> Connect points of equal **pressure**
 - <u>Isotherms</u> Connect points of equal temperature

Isotherms

Isobars

Vocabulary Puzzles

- 1. I am going to pass out vocabulary words and definitions.
- 2. You have 3 minutes and 25 seconds to find the person who has either the matching WORD or matching DEFINITION to yours.
- 3. When you find that person, read the word and definition out loud to one another.
- 4. Sit down together.
- 5. Be ready to share your word and definition out loud.

Reading Weather Maps...

Let's practice together...

Reading Weather Maps...

Let's practice together...

Describe what the weather might be like in the Midwest.

An area of low pressure means CLOUDY SKIES. A COLD FRONT means RAIN and possible THUNDERSTORMS

